
  

  

Abstract—Humanoids are increasingly used in the service 

sectors around the world to work with, or assist humans. 

However current humanoid designs place limitations on direct 

engagement with the human in terms of safety and usability. In 

this paper, we present an approach for the control of hybrid, 

high-speed and safe human-robot interaction systems with 

highly non-linear dynamic behavior. The proposed approach 

comprises the three soft computing techniques, namely back 

propagation neural network, fuzzy and genetic algorithms. This 

open-loop controller was applied to a Bridgestone Hybrid 

Robot Arm (BHRA). BHRA has three electric motors and four 

artificial muscles, arranged in an agonist/antagonist, and 

opposing pair configuration, that drive the five-degrees of 

freedom of the robot arm. The behaviors of the artificial 

muscles are observed under the effects of the links driven by 

the electric motors and it is shown that the proposed 

biologically-plausible controller could produce more accurate 

trajectories at higher speeds when compared to conventional 

PID and stand alone or combined versions of Neural Network 

and Fuzzy controllers. 

I. INTRODUCTION 

Humanoid robots are expected to perform a variety of 

service tasks in increasingly challenging environments. One 
of the problems in present service robots lies in the 
mechanical design of robot platforms. Recently an 
alternative design strategy called "musculoskeletal robot 
design strategy" has been proposed as a next-generation of 
safe and energy-efficient humanoid robot design [1]. This 
paper is to explore a mechanically and biologically inspired 
musculoskeletal model of human-like arm which can be 
implemented in a humanoid robotic platform [2]. 

Artificial muscles (Rubbertuators, Rubber-Actuators or 
Pneumatic Muscles) are used to provide a relatively safe 
human-robot interaction for manipulator, automation and 
robotic tasks. Lightweight, high power/weight ratio and 
compliant nature make artificial muscles advantageous over 
classical motor actuators especially in human-robot 
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coexisting environments. On the other hand, it is very 
difficult to control artificial muscle systems because of the 
high compressibility of air, poor damping ability, the strong 
nonlinearity, the time lag of valve operation, the change in 
the shape and the temperature of artificial muscles with use, 
and hysteresis [3][4][5][6]. Accordingly, a number of control 
strategies addressing some of these difficulties have been 
introduced in the last two decades. Control techniques based 
on PID control [7], adaptive control [8], nonlinear optimal 
predictive control [9], neural network control [6], fuzzy-PID 
control [10], sliding mode control [3] and frequency 
modeling and control [11] could offer solutions to the 
control of highly nonlinear pneumatic systems. One of the 
novelties of this paper is to develop a bumpless open-loop 
controller for artificial muscles that work together with 
motor-driven links at very high speeds and challenging 
dynamic environments.  

The proposed approach has its roots in the biological 
functioning of the human brain, specifically the neural 
activity of the primary motor cortex which encodes the 
magnitude, the direction of movement and force in the 
physical space on a single-neuron level. Neural activity in 
the primary motor cortex encodes movement direction and 
the forces on a single-neuron level [12]. For instance, 
individual cells in the motor cortex possess directional 
preference, that is, while some cells fire most during a 
movement to a particular direction, others fire most during 
movement towards another direction [13]. Hence, the 
frequency of discharge is a sinusoidal function of the 
movement direction [14], i.e. the response of each cell is 
represented as a direction vector, which points to the 
preferred direction for the neuron. Moreover, it is possible to 
reconstruct the muscle tensions, which includes the 
information of the magnitude and direction of force, from 
the neural activity of 105 neurons in the primary motor 
cortex related to the arm as did [12].   

In this research, simple neural networks are used to 
encode movement direction and the forces on a single-
neuron level. A fuzzy-neural hybrid controller for high-
speed hybrid robot arm BHRA, shown in Figure 1, was 
developed to work with Humans. The neural network size is 
limited to 3 nodes and one hidden layer, and a simple fuzzy 
algorithm with minimal linguistic variables and minimal 
number of rules was employed. The goal is to combine these 
two soft computing approaches to achieve a biologically-
inspired, fast accurate and safe control of BHRA. The 
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classical motors maintain a high accuracy and power for the 
arm; on the other hand, the artificial muscles support the 
complaint nature of the arm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Bridgestone Hybrid Robot Arm (BHRA). The first joint (θ1) is 
a linear actuator and powered by Motor1, which moves the arm in X-
direction. The second joint (θ2) is a rotary actuator and powered by Motor2, 
which moves the Link 1 directly. The third joint (θ3) is a rotary actuator and 
powered by Motor3, which moves the Link 2 using a chain. The fourth joint 
(θ4) is a rotary artificial muscles (rubbertuators) driven joint and moves the 
end-effector (in red) in Y-Z plane. The fifth joint (θ5) is a rotary artificial 
muscle driven joint and rotates the end-effector around Z-axis.  

 

As discussed in [15], artificial neural networks (ANNs) 
offer good performance in dealing with inputs with various 
ranges. While ANN learns the behavior of highly nonlinear 
systems, fuzzy logic techniques deal with issues on a higher 
level, noise tolerance, and higher expressive power. 
However, since fuzzy systems do not have much learning 
capability, it is difficult to find and tune the fuzzy rules and 
membership function. The internal layers of a neural 
network are always opaque to the user, sometimes called 
“black box”, and the mapping rules in the trained network 
are difficult to understand. Furthermore the convergence of 
learning, in neural networks, is usually very slow and not 
guaranteed. A neural network with more hidden layers and 
more nodes was tried to output adequate pressure signals to 
artificial muscles. However, the learning performance and 
the control performance were worse due to its local 
minimums, especially close to the limits of the workspace. 
In this study, to benefit from the merits and overcome the 
demerits of neural networks and fuzzy rules, the two 
methods are merged and a cost function is optimized by 
adjusting the linguistic variables of the fuzzy logic through 
the use of genetic algorithms.  

II. THE FUZZY-NEURAL HYBRID CONTROL STRUCTURE 

 

In the fuzzy-neural hybrid control structure of BHRA, the 
physical model of the robot dynamics is modeled with a 
multi-layer back propagation neural network system. The 
nonlinear joint trajectories are divided into segments in 4-
degree increments as shown in Figure 2, and a dedicated 
neural network is trained for each segment. The input output 
relation of a neural network at this stage is not totally 

“black-box”, but rather a physical model defines the input 
structure for the desired output. Another fact, that has to be 
taken into account, is the hysteresis properties of the 
artificial muscles. In order to overcome hysteresis two neural 
networks are used for forward and backward direction of the 
motion. The discrete consecutive neural networks are 
combined by using a fuzzy algorithm to achieve an accurate 
but smooth control of BHRA. The rules of the fuzzy sets are 
refined by genetic algorithm. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The reach angle and the coordinate frame attachment to the three-
link planar manipulator 

 
 
 
 
 

Figure 3: BHRA Open Loop Control Structure 

 
The BHRA control loop comprises two trained neural 

network, PONNET (Position Control Neural Network) and 
ANNET (Actuator Control Neural Network), as [6]. In 
addition there is the third Neural Network layer, FPONNET 
(Fuzzy Position Control Neural Network) for each artificial 
muscle and a fourth one is the MONNET (Motor Control 
Neural Network) needed for each motor of the hybrid arm, 
shown in Figure 3.  

The desired trajectory is the input of the control system. 
The inverse kinematics and dynamics compute the desired 
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angular positions, velocities and accelerations for each joint. 
A PONNET receives the results of the inverse kinematics for 
its joint and produces a pair of pressure values 
corresponding to the desired degree of the joint. The output 
of the neural network, belonging to the previous degree-
segment is also computed and the results of two PONNETs 
are combined by FPONNET to compute the desired pressure 
by combining the two pressure values. The ANNET is used 
to compensate the delay by modeling a second order delay 
function. The output of the ANNET is the desired control 
voltage reference for the artificial muscles' regulators. The 
MONNET is a relatively simpler neural network system to 
control the motors, which takes the desired trajectory and 
produces the velocity references as voltage outputs. 

A. The ANNET 

To overcome the delayed actuator response, mostly 
because of the air compressibility and rubber elasticity, a 
neural network called ANNET was used with PONNET for 
the compensation of the delay characteristics [6].  

As described in [6], the artificial muscle-air regulator 
characteristic as a simple exponential delay function is 
described as: 

 
 

where A is a scaling constant, Pm is the artificial muscle 
pressure, Vc is the air regulators control voltage and T is the 
time constant of the artificial muscle-air regulator pair. It can 
be shown that Pm becomes equal to the target pressure, Pd , 

with no delay, if the control input to the air regulator is: 
 

  

 
based on Equation 2, the input nodes of the ANNET neural 
network are simply two: one for the desired pressure signal 
and one for the rate of change of the desired pressure signal. 
A bias term is also included for the completeness of the 
neural network. Therefore, the simple form of the neural 
network will be the same as in [6]: 

  
 

 
where w1,w2 and w3 are the weights of ANNET. The output 
error is defined as:  

 
    

 
where Pm is the measured pressure of the artificial muscle.  
Thus, ANNET is aimed to learn the transfer function of the 
artificial muscle-air regulator pair that is modeled with a first 
order delay [6]. The mean square error of the system with a 
very good trained (epoch size of 40000 and 3 neurons) 
neural network is 0.0506. 

In order to improve the ANNET performance described in 
previous work [6], a simple second order delay function is 
used in this study as: 

 

  

 
The delay function will be: 

 
 

 
The corresponding form of the neural network will 

therefore become: 
  

 

ANNET is aimed to learn the transfer function of the 
artificial muscle-regulator pair that is modeled with a second 
order delay. The mean square error of the system with a 
properly trained (epoch size of 40000 and 3 neurons) neural 
network reduces to 0.0136. 

B. The PONNET 

In order to construct the position control neural network 
(PONNET) based on the physical model as proposed, we 
need to analyze the Language-Euler formulation of the 
BHRA. However, none of the dynamics parameters involved 
in a Lagrange-Euler expression will be computed or solved 
for. These expressions will be used to choose the correct 
input vectors and to define the correct neural network 
architecture of the PONNET layer.     

The Lagrange dynamic formulation provides a means of 
deriving the equations of the motion from a scalar function 
called the “Lagrangian”, which is defined as the difference 
between the kinetic and potential energy of a mechanical 
system. Lagrangian difference is formulated as: 

   

 
where K and P are, respectively, the total kinetic energy and 
the total potential energy of the system. The Lagrange's 
equations of the system are obtained by using Equation 9. 

  

 
 

All the joints are revolute, then the required torque, Τi, of 
joint i, is expressed as in terms of joint variables, qi. The 
torques acting on the end-effector is calculated by using 
Equation 10, as: 

 
 

 
 

where, Cx = Cosθx, Sx = Sinθx , Cxyz = Cos(θx+θy+θz) and Sxyz 

= Sin(θx+θy+θz), m3 is the point mass of the end effector, 
and L1, L2, L3 are the length of the links, g for the gravity, q4 

and q5 are the approach and orientation angles of the end-
effector with respect to the fixed robot coordinate frame. 
The above equations are different from [6] because the links' 
movement is along the horizontal direction in [6] where, in 
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our system the trajectories are along the vertical direction 
against the gravity.  

The effective point masses and effective link lengths, 
which were involved in Equation 10 and very hard to found 
by using very accurate measurement techniques or complex 
system identification tools, are left to PONNET. However, 
these parameters are trajectory independent and instead of 
finding the exact values of these parameters, PONNET can 
generalize from a representative set of training trajectories. 

 In order to relate these torques with the artificial muscle 
torques acted on the end-effector, the artificial muscle 
pressure for the two joints can be found by Equation 11 [4]. 

 
  

 
where β, γ and α are artificial muscle specific constants that 
we also do not wish to compute. Here, i, is the artificial 
muscle index, Po the equilibrium pressure, ε is the elongation 
and “±” is positive for an agonist and negative for an 
antagonist artificial muscle. For the time being if the joint is 
assumed to be fixed in position, making ε a constant, the 
trajectory variables can be separated. It is a paradox to 
assume ε a constant for a robot that is designed for motion, 
but the paradox is resolved by dividing the motion space of 
each artificial muscle into several small segments as 
depicted in Figure 4 and assuming ε constant only for that 
small segment, only. With this assumption, combining 
Equations 10 and 11, a weighted sum of the non-linear 
functions of trajectory variables can be expressed any of the 
four artificial muscle pressures as: 

 
 

 
 
 
The weights represent system parameters, such as pulley 

radius, r, initial pressure Po joint position ε, the artificial 
muscle parameters (β, γ and α), the robot parameters (m3, L1, 
L2, L3 and g). Furthermore, the artificial muscle pressure is 
always positive and bounded thus enabling us to use the 
sigmoid function for error propagation. Therefore we can 
assign a single layer backpropagation neural network for 
each artificial muscle using Equation 12, which we call 
PONNET. There is a dedicated PONNET for each artificial 
muscle and for each 4° segment of the joint motion as in [6]. 
Considering the maximum and minimum reach limits of the 
workspace as -72° and 72° , for each artificial muscle 36 
small neural networks are trained (Totally 4x36=144 
PONNET). As mentioned in [2][3][4][5] the hysteretic 
characteristics of artificial muscles cause different torques 
when moving forward or backwards. In order to overcome 
this problem, we use two different neural networks for the 
same angle segment, making the total number of neural 
networks per artificial muscle 288 PONNETs. However, 
only one is active at a given time depending on the desired 
joint position(θd) and moving direction as shown in Figure 4. 

C. The Estimated Error Function of PONNET 

In order to understand the characteristics of the error 
caused by the discontinuities between discrete PONNETs, 
again the collected output data is given as input (P1c, P2c, 

P3c, P4c  and joint variables) to the built PONNETs.  

Figure 4: Division of the workspace of the end-effector into small segments 
such as in [6] 

 
The resulting error is: 

 
 

where PsPONNET is the simulated pressure output of the 
PONNETs. As it was discussed in the previous section, we 
have 72 PONNETs for each artificial muscle. Instead of 
finding the estimated error function for each 4° segments 
and for each artificial muscles, all the segments are reduced 
to one 0°- 4° segments, which will show the general error 
characteristics of the error distribution, shown in Figure 5. 

 
 

where θc is the collected angle data and θr  is the reduced 
angle. Table 1 shows the results of this process. 

 
 

The mean error value is found for each reduced angle 
value and the estimated error function is constructed by 
fitting a second order polynomial curve to the error 
distribution, show in Figure 5. 

 
Table 1. All the collected angles are reduced to a reduced angle, which is 
between 0°- 4° 

Collected 
Angle 

Reduced Angle  
[Angle - int(Angle/4)] 

Error (bar) 

4 4 0.017 
7.2 3.2 0.015 
13.5 1.5 0.012 

2 2 0.008 
32 0 0.018 
63 3 0.013 
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Figure 5. The Generalized Estimated Error Function 
 

D. The Fuzzy-Neural Hybrid System Approach for Robot 

Arm Controlling 

Fuzzy logic approach that was introduced in 1965 by 
Zadeh [16] is an efficient way to map input spaces in to 
output spaces of complex systems [17]. The proposed study 
is a combination of fuzzy algorithm with the neural network 
pressure outputs and models the elongation nonlinearity to 
give a final pressure value for controlling the robot arm. 
There are basically two linguistic variables: estimated error, 

Ê (unit in pressure) and convex combination parameter, α. 
The antecedent variable, estimated error is obtained from the 
error distribution of artificial neural network system outputs. 
Convex combination parameter, α, is the consequent 
linguistic variable of the fuzzy algorithm. Both the error and 
combination parameter have five normal type triangular 
membership functions that are namely very low, low, 
medium, high, and very high. The membership functions are 
basically specified with two parameters, mean  of symmetric 
triangular, xi, and the width of its sides, µ i, where i=1,2,3,4,5 
as shown in Figure 6. 

Figure 6. The fuzzy method linguistic variables a) error b) convex 
combination parameter 
 

The final pressure is calculated as a convex combination 
of two consecutive neural network pressure outputs as 
follows: 

 
 

where Pf is the final pressure, Pno1 and Pno2  are consecutive 
neural network pressure outputs. 

The rules are adjusted such that minimum error is 
manipulated in a way that the pressure output of the 
PONNET is used with maximum contribution to the final 
pressure output, i.e. α becomes 1 and when the error is 

maximum, the contribution of the consecutive neural 
network outputs are forced to be equal, this means α 
becomes 0.5.  

Since there is only one variable in the system there is no 
need to use a t-norm in the inference. The fuzzy membership 
function value of the antecedent is directly becomes the 
fuzzy number of the consequent variable. Center of gravity 
is used as defuzzification method in the fuzzy algorithm. 

E. The GA Optimization 

In the previous section, the fuzzy membership function 
variables are chosen by experimenting. In order to find more 
appropriate membership function variables, a basic GA 
optimization is used because it can be applied to solve a 
variety of optimization problems that are not well suited for 
standard optimization algorithms, including problems in 
which the objective function is discontinuous, non-
differentiable, stochastic, or highly nonlinear. In addition 
GA can be used for both constrained and unconstrained 
optimization problems [18]. 

The objective or the performance criteria is to minimize 
the total root mean squared error of the desired pressures and 
the pressure output of the fuzzy-neural hybrid system. The 
training data for PONNET is also used for GA optimization. 
As mentioned before the main goal is to find an off line 
control structure, so a set of training data is used during the 
construction of the control system.  

The inputs to the GA are the mean and the width of the 
membership functions shown in Figure 6 and given in 
Equation 16, thus for each of five membership functions, 
there are two variables (the center and width of the 
membership functions) and consequently the number of 
variables for GA is 10. 

We use the root mean square error as the fitness function 
of the GA.  RMSE is computed from the difference of the 
output of the fuzzy-neural hybrid system and the actual 
pressure values. The optimization parameters are x1, x2, x3, 

x4, x5, µ1, µ2, µ3, µ4, µ5. The population size is 20, the 
crossover fraction is 0.8, and the migration fraction is 0.2. 
The floating point representation is selected as the gnome 
structure for each individual. The genetic algorithm then 
creates a population of solutions and applies genetic 
operators such as mutation and crossover to evolve the 
solutions in order to find the best one. 

III. EXPERIMENTAL RESULTS AND 

CONCLUSIONS  

 
In order to show how accurate the new system is in 
comparison to the previous one, several trajectories were 
given to the manipulator to follow using two methods: 
neural network [6] and fuzzy-neural hybrid. The control 
objective was to keep the end-effector always perpendicular 
to the X-Y plane of the operational space as shown in Figure 
1. It is assumed that the task is to paint the desired trajectory 
on the X-Y plane using a pen, which has to be always 
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perpendicular to the surface. Thus, Joint 4 will move up and 
down, while Joint 5 will not rotate in order to keep the pen 
perpendicular to the wall. The trajectory tracking 
performances, which are the root mean square of the errors 
(RMSE), between the end end-effector's desired trajectory 
angle and θ4 in each step, are calculated for the neural 
network control method cited in [6] and the new fuzzy-
neural hybrid control method in the operational space and in 
the joint space, and the outputs are shown in Table 2. 
 
Table 2: The RMSE Performance Analysis of Both Systems on Various 
Trajectories (The RMSEs , shown in the table, are the performance of the 
controller for sine waves with frequencies of 0.1Hz, 0.3Hz, 0.5Hz, 0.8Hz, 
ramp and step trajectories) 

Trajectory Neural 
Network 

Fuzzy-Neural 
Hybrid 

Change 
(%) 

Sine,f=0.1Hz 2.2836 1.7699 22.50% 
Sine,f=0.3Hz 2.4624 1.9286 21.68% 
Sine,f=0.5Hz 2.9403 2.2518 23.42% 
Sine,f=0.8Hz 5.7398 4.0077 30.18% 

Ramp 1.9413 1.7791 8.36% 
Step 2.3789 2.4221 -1.81% 

 

The results show that outputs of the fuzzy-neural hybrid 
system had less time delay, more smooth and fit to the 
desired motion trajectory better than the only-neural network 
method. Using a second-order model instead of first-order 
caused the outputs to decrease the time delay and using a 
fuzzy-neural hybrid system caused the system outputs to be 
more smooth and accurate. The RMSEs of both systems 
were nearly the same for the step inputs, because the fuzzy 
system is constructed only for the discontinuities between 
consecutive small neural networks, not for the high 
discontinuities in the desired trajectories.  

In conclusion, the original system defined in [6] was 
improved by introducing an efficient second-order delay 
function and constructing a fuzzy-neural hybrid control 
system by combining the discrete neural networks without 
chattering. The new controller encoded the physical 
quantities such as the magnitude, direction of movement and 
their derivatives [12][13][14] to meet the primary concepts 
of the human brain functioning for the arm movement. This 
model is not only more biologically-plausible than the 
previous model [6] but also is more accurate and efficient. 
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