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Abstract— This paper addresses the design issues of a hybrid
neural network-based PID control with grey prediction and non-
contact impedance as applied to a humanoid robot named ISAC.
ISAC uses two six degree-of freedom manipulators called Soft
Arms which are actuated by pneumatic artificial muscles. High
nonlinearities such as hysteresis and unknown dynamics of these
muscles make arm control a challenging task. ISAC was designed
to assist physically challenged, thehefore it has to fulfill safety
precautions concerning its movements. To evaluate the proposed
controller, it was tested for human-like grasping motions while
guaranteeing the safe interaction with humans. The controller
consists of two sub-controllers, an open-loop neural network-
based controller which is managed by non-contact impedance
and powered by grey prediction.

I. INTRODUCTION

A. Related Literature

Extensive experimental studies have been carried out to
identify biological control strategies of human arms and hands.
Humans can perform a variety of dexterous movements by
adjusting dynamic characteristics of the musculoskeletal sys-
tem in motion. For example, a volleyball player can serve an
extraordinarily fast ball through controlling his arm dynamics
and creating an arc-shaped movement of his arm. The momen-
tum of the ball depends not only on the strong muscle power
of the player, but also on the ability to freely control his arm
dynamics and learned skills. Much research has been done
on human movements and often described with mechanical
impedance parameters; stiffness, viscosity, and inertia [1][2].
Gomi et al. [3] and Tsuji et al. [4] included arm movement
and examined human hand characteristics, including inertia,
viscosity and stiffness in multi-joint arm movements.

Artificial pneumatic muscles [5][6] are often adopted by
designers for several reasons because they provide safe human-
robot interaction and have high power/weight ratios. Although
these muscles are superior in some respects to standard robotic
arms using electrical motors, controlling these muscles is
extremely difficult due to nonlinear characteristics. This high
nonlinearity stems from poor damping ability, delays from
valve operations and the changes in parameters during usage
[7][8][9][10]. In order to deal with these problems, various
close-loop feedback controllers have been proposed. They
range from basic PID [11] and fuzzy+PID [12] controllers
to more sophisticated neural network [13] and sliding mode

[7] controllers. Since response is extremely slow and actuators
are compliant in nature, pneumatic muscle-based systems the
feedback loop can result in instability. Sliding mode control
can solve these types of problems but one disadvantage is
chattering which results in instability. Chattering increases the
load of the controller, damages the artificial pneumatic muscles
and shortens the life-time of the artificial pneumatic muscles.

Artificial neural networks (ANNs) offer good performance
to deal with inputs having various ranges [14], to create
mappings between the reference signals and the arm move-
ments, and to be used as an open-loop controller to reduce
the problems associated with artificial muscle-based systems.
The change in the parameters of the artificial muscles requires
repeated training of ANNs. However, in our controller we use
ANNs to bring the end-effector to the vicinity of the goal
position. By not requiring an exact positioning, ANNs do not
need further training. After reaching the vicinity of the goal
position, a PID controller with non-contact impedance and
grey prediction takes action to bring end-effector to the goal.

Impedance control is generally used as a way to control
the mechanical impedance of an end-effector in an environ-
ment where interaction forces are important. An innovative
work by Hogan [15] introduced a method to control end-
effector impedance. Other researchers followed Hogan’s work
[16][17][18]. The interaction forces are controlled after a
contact occurs and relied on force sensors for their feedbacks.

In grasping, it is better to control the end-effector before
any contacts with the target object occur. In this way, the task
of grasping of any fragile object that requires a careful grasp
is better handled. Castano proposed the concept “visual com-
pliance”, a basis for non-contact impedance control [19][20].

Deng introduced the grey system theory in [21]. As a
predictor for systems with partially unknown parameters or no
exact system dynamic model, the grey theory has been proven
to enable to increase the performance of classical controllers
[23][24]. The integration of a grey predictive control into PID
control with impedance does not only simplify the design
procedure but also improves the controller performance.

In our research, we used a controller consisting of two sub-
controllers. ANNs are used for reaching the vicinity of the
end-effector. At a point where end-effector gets closer to the
goal, PID control with non-contact impedance takes over for
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Fig. 1. ISAC- Intelligent Soft Arm Control Robot

bringing the end-effector to the goal position. Grey predictor
is utilized for PID controller with non-contact impedance
to overcome delay problems associated with the artificial
pneumatic muscles.

B. Overview

This paper is divided into six sections. In section 1,
brief information about the subject and related literature was
presented. Section 2 examines the system to be used for
experimentation. In section 3, the proposed controller structure
is defined and mathematical equations are given. In Section 4,
experimental results of the theory developed are presented
with comparisons to PID control without grey prediction and
non-contact impedance. The last two sections present the
experimental results and the planned future work.

II. EXPERIMENTAL PLATFORM

ISAC (see Fig. 1) is an upper-torso humanoid robot with
two 6-degree-of-freedom arms that are actuated pneumatically
by artificial pneumatic muscles which provide a relatively
safe human-robot interaction for manipulation, automation and
other tasks. ISAC kinematics are very close to the PUMA 560
kinematics, which is solved in [25].

Because the artificial pneumatic muscles are unidirectional
actuators, two antagonistic coupled artificial pneumatic mus-
cles are needed to actuate a revolute joint as shown in
Fig. 2. Whereas both position and compliance of the joints
are determined by the artificial pneumatic muscle pressures,
controlling the antagonistic joint actuator is therefore done by
controlling the pressures. These pressures are controlled by
electro-pneumatic regulators. These regulators have very fast
acting valves (sampling time = 4ms) that set the pressure at a
level proportional to the valve signal input voltage.

The first two joints of the arms are actuated by antagonistic
and agonist artificial pneumatic muscle pair. The third and the
forth joints are differential pairs, this means that four artificial
pneumatic muscles (two pairs of are antagonistic and agonist
artificial pneumatic muscles) are linked together to control two
revolute joints, intersect at a point as shown Fig. 2b. This
system was inspired from human elbow and wrist structure.
For example, a person can turn his hands to face down or up
and at the same time, we can move our hands up and down,
by the contradiction and relaxation of forearm muscles. The
last two joints are also differential pairs.

Fig. 2. a) A pair of artificial pneumatic muscles can produce a revolute
joint about the axis of the pulley connecting the two ends of the artificial
pneumatic muscles. b) Two pairs of artificial pneumatic muscles can produce
two revolute joints about the axis of the pulley connecting the ends of the
artificial pneumatic muscles.

Fig. 3. Controller structure

ISAC is also equipped with an active stereo vision system.
Using two cameras which pan and tilt independently. This
system is used to localize objects in ISAC workspace.

III. CONTROLLER

Our controller consists of two sub-controllers. For the first
sub-controller, we use a simple mapping between joint angles
to input voltages of the valves by using ANNs. The second
is a PID controller with additional impedance. The controller
structure is shown in Fig. 3.

A virtual sphere with radius r, which equals to pre-specified
distance, is located at the goal position as in [20]. If the
end-effector’s distance to goal is bigger than the pre-specified
distance, the controller uses ANNs which map the joint angles
to input voltages of valves. Although ANNs have various
advantages over other type of controllers in this particular case,
it cannot guarantee the reaching of the goal state. In order
to guarantee reaching and grasping, the controller switches
to the PID controller with impedance after the end-effector
gets closer to the goal position than the pre-specified distance.
Additionally a grey predictor is utilized for improving the
performance of the PID controller.

A. ANN Controller

The soft computing method used as a controller here is
the well-understood back-propagation neural network with the
generalized delta rule employed as the learning mechanism.
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The main motivation of using ANNs in our controller is its
capability of learning the relation between the air regulator
input references and the joint motion, which is nonlinear and
involves hysteresis. The frictional forces between the rubber
tube and the sleeve cause this hysteresis problem. To overcome
control problems associated with the hysteresis, two different
ANNs are trained for opposite motion directions of the same
joint.

The ANNs used to map joint angles to the input voltages
of valves have a simple structure with an input layer, a
hidden layer and an output layer. While input layer and output
layers consist of one neuron each, ten neurons were used for
the hidden layer. Sigmoid function is used as the activation
function and the nets are trained in ten thousand epochs with
approximately two hundred samples.

B. PID Controller with Impedance

The main motivation in the selection of the PID controller
with impedance is its applicability of our planned future work
titled “learning grasping affordances”. In this future work,
learning is claimed to be achieved by adaptively changing
the impedance parameters. Moreover, impedance part of the
controller allows us to control the position and the velocity
of the end-effector directly, which is crucial for dexterous
grasping.

To realize the switching between ANNs and the PID
controller with virtual impedance, a sphere of predetermined
radius is assumed to be located at the goal position as in
[20]. When the end-effector penetrates through the boundary
of this sphere, the PID controller with impedance takeovers
the control from ANNs for dexterous grasping.

Furthermore, in this work the PID controller’s performance
is improved by grey prediction, which is used to reduce delays
by prediction of the future output values of the joint angles.
As will be shown by experiments, the grey predictors work
well in reducing the overshoots which are almost inevitable in
systems where controller switching takes place.

1) Mathematical Foundation of the PID Controller with
Impedance: The dynamic equation for an n-joint manipulator
can be represented in a general state-space form as follows:

M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) = τ, (1)

where Θ is the nx1 joint angle vector, M(Θ) is the nxn
mass matrix of the manipulator, V (Θ, Θ̇) is an nx1 vector
of centrifugal and Coriolis terms, G(Θ) is an nx1 vector of
gravity terms, and τ is the nx1 joint torque vector.

In order to control the manipulator, a τ vector needs
to be designed and supplied to joints. Since in our case
M(Θ), V (Θ, Θ̇), G(Θ) are all unknown, a model-based con-
troller cannot be designed for controlling the end-effector
position. Considering this fact and the reasons mentioned in
the previous sections, we focus our attention on two control
schemes -ANNs and PID- for controlling the soft arm. A
virtual impedance is placed between the end-effector and goal
position for dexterous grasping. In the proposed controller, at
the outside of the virtual sphere, τ is supplied by the ANNs.

Fig. 4. Virtual sphere and impedance

After entering the virtual sphere, the controller switches to the
PID controller with impedance, where τ can be expressed in
the following form:

τ = τPID + τe, (2)

where τPID ∈ Rn is the torque supplied by the PID controller
and τe ∈ Rn is the torque resulted from the impedance
designed for an dexterous grasp.

The virtual impedance added to the end-effector slows down
motion when the end-effector approaches to its goal position.
Fig. 4 shows both the virtual sphere and the associated virtual
impedance added to the end-effector. Mathematical notations
follow the notations in [20]. When the end-effector enters the
virtual sphere, the displacement vector Xr ∈ R3 is given by
the following equation:

Xr = Xe −Xo, (3)

where Xe ∈ R3 is the position of the end-effector and Xo ∈
R3 is the center of the virtual sphere where object is located.
The corresponding normal vector from surface of the sphere
to the end-effector position can be defined by the following
equation:

dXe = Xr − ra (4)

where r ∈ R is the radius of the virtual sphere and a ∈ R3

is defined as:

a =
{ Xr

|Xr| (|Xr| 6= 0)
0 (|Xr| = 0)

, (5)

where |Xr| ∈ R is the norm of Xr.
The force associated with the virtual impedance can be

calculated from the following equation:

Fe =
{

MedẌe + BedẊe + KedXe (|Xr| < r)
0, (|Xr| > r)

, (6)

where Me, Be,Ke ∈ R3x3 are the virtual inertia, the viscosity
and the stiffness matrices.

The virtual force calculated as above can be distributed to
the individual joints by:

τe = JT (Θ)Fe, (7)

where J(Θ) ∈ R3xn Jacobian matrix associated with the goal
position. The Jacobian matrix of the soft arm is calculated by
measuring various link lengths. Since there could be errors
in the measurements, the distribution of the force to joints
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might not be the exact one. However, grey prediction used
also compensates the errors associated with the Jacobian.

In the soft arm, the torque is supplied to joints by creating a
pressure difference between two artificial pneumatic muscles
that are antagonist (See Fig. 2). The relationship between the
pressure difference ∆P ∈ R and the torque τm ∈ R is defined
in [22] by:

∆P =
τm

2h(β − αε)
− γ

(β − αε)
, (8)

where h is the radius of the pulley system that connects
the antagonist pneumatic muscles, β, γ and α are artificial
pneumatic muscle specific constants and ε is defined as:

ε =
(L0 − L)

L0
, (9)

where L0 is the initial and L is the present length of an
artificial pneumatic muscle.

The relationship between τm and ∆P is used to calculate
∆P s associated with the τe. For the ith joint the pressure
difference ∆Pi can be calculated as follow:

∆Pi =
τei

2h(β − αε)
− γ

(β − αε)
, (10)

where τei ∈ R is the torque distributed to the ith joint.
Then, inside the virtual sphere, the ith joint is controlled as

follows:

P t+1
i1 = P t

i1 + (KPie
t + KDi ė

t + KIi

∫
etdt−∆P t

i )
P t+1

i2 = P t
i2 − (KPi

et + KDi
ėt + KIi

∫
etdt−∆P t

i )
,

(11)
where Pi1, Pi2 ∈ R are the pressures of antagonist muscles
of ith joint, KPi

,KDi
,KIi

are the PID parameters, e = (θi−
θd) ∈ R is the error between current θi and desired θd joint
angles, and ∆Pi is the pressure difference resulted from the
distribution of the impedance force. The superscripts t and
t + 1 are used to represent the current and next step values of
the variables.

As getting closer to the object the effect of impedance
exceeds that of PID controllers. Thus a threshold for individual
joints is needed to be defined for reaching the goal position.
A threshold for the ith joint ζi ∈ R is defined as:

ζi = 0.8(KPie
t + KDi ė

t + KIi

∫
etdt) (12)

If ∆Pi exceeds calculated threshold value, its value is equated
to the ζi value.

2) Grey Predictor: In order to improve the performance of
the PID controller with impedance, we utilize a grey predictor
for each individual joint of type GM(1,1) (the first-order one-
variable grey differential equation model) which is capable
of predicting future output joint angle values. By using the
predicted joint angles, the impacts of problems associated
with the time delays in muscles are decreased. As a result,
which will be shown in the experimental results section, the
overshoots are reduced in the system response considerably.

In this model, in order to reduce the randomness of the
data, an operator called Accumulating Generation Operation

(AGO) is applied. Accumulated data will be used to find the
parameters of first-order differential equation of GM11. From
differential equation, which is specified by the calculated pa-
rameters, future values of the accumulated data are predicted.
In order to get the actual predicted values of the system, an
operator named Inverse Accumulating Generation Operation
(IAGO) is applied to the predicted accumulated data values.

Here is a brief summary of the grey systems theory [23].
Let’s assume we have the system output as a non-negative
time sequence data as follows:

D(0) = (d(0)(1), d(0)(2), d(0)(3), . . . , d(0)(n)), n ≥ 4 (13)

where n is the sample size. AGO is applied to this primitive
data to smooth the randomness. Obtained new sequence with
reduced randomness is as follows:

D(1) = (d(1)(1), d(1)(2), d(1)(3), . . . , d(1)(n)), n ≥ 4 (14)

where

d(1)(k) =
k∑

i=1

d(0)(i), k = 1, 2, . . . , n (15)

Then, the mean sequence data, Z(1), of D(1) can be found
as follows:

Z(1) = (z(1)(2), z(1)(3), . . . , z(1)(n)) (16)

where
z(1)(k) =

1
2
d(1)(k) +

1
2
d(1)(k − 1) (17)

The least square estimate sequence is defined by the fol-
lowing equation:

d(0)(k) + az(1)(k) = b (18)

The corresponding whiting equation is as follows:

d[d(1)(t)]
dt

+ ad(1)(t) = b (19)

The parameters a and b can be found by using the following
equation:

< a, b > = (BT B)−1BT−→Y (20)

where −→
Y = < d(0)(2), d(0)(3), . . . , d(0)(n) > (21)

and

B =


−z(1)(2) 1
−z(1)(3) 1

. .

. .
−z(1)(n) 1

 (22)

In Equation 19, the solution for d(1)(t) is as follows:

d(1)
p (k + 1) = [d(0)(1)− b

a
]e−ak +

b

a
(23)

In order to predict the output of the system, IAGO is
applied. The predicted value can be obtained as follows:

d(0)
p (k + H) = [d(0)(1)− b

a
]e−(k+H+1)(1− ea) (24)
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where H is the step size of the prediction.
In this work, we used a window size of 5 and a step size

2 for an individual grey predictor. In other words, 5 previous
values are used to predict 2 step afterwards of the output joint
angle. Instead of feeding current output value, the predicted
value was used for the PID controller.

IV. EXPERIMENTAL RESULTS

The applicability of the theory is investigated by experi-
menting on ISAC’s left arm. As mentioned earlier, instead
of comparing the results with other controllers which can be
applied to unknown dynamics system, we only consider the
applicability of the theory. Our planned future work, in which
ISAC will learn how to grasp objects, there is a need for a
controller that can enable us to adaptively control end-effector
position and velocity. This work will constitute a foundation
for future work.

The location of the object was determined by using the
stereo vision system and a virtual impedance sphere, with a ra-
dius of 100 mm, was placed around that object. Performance of
the controller is presented in Fig. 5. For comparison purposes,
the results obtained from solely application of neural nets and
controller without grey prediction are also presented. From
given figure, one can easily distinguish the two controllers.
As mentioned earlier, while neural networks are used for
perfunctory movement to the goal, the neuro-PID controller
with grey prediction and impedance takes the control for
the final steps for dexterous grasping. The results shown
confirm that a goal of smoothly reaching the end position
by mimicking humanoid motion has been realized. Fig. 5
illustrates that neural networks can be used for reaching the
neighborhood of the goal position from a distant location.
After reaching the neighborhood, PID control with impedance
slowly settles the end-effector to the final position. However, at
the line that separates the two controllers, we see some damped
oscillations. These oscillations are the result of perfunctory
movements realized by the neural networks and the natural
delays associated with the muscles.

In order to reduce the amplitude of the oscillations, grey
predictors were added to the individual PID controllers of
joints in the system. Fig. 6 shows a zoomed portion of Fig. 5
for a better look. As can be deduced from the figure, the grey
predictors are pretty good in improving the performance of
the controller. With the help from grey predictors, we can
account for delays in the system. Grey predictors also exhibit
some filtering ability by reducing the chattering like responses
which resulted during switching of the controller. Sliding mode
controllers, however, are not suitable for pneumatic muscle
type actuators where chattering shortens the life-time of the
actuators.

V. CONCLUSION

In this paper, a neural network-based PID controller with
impedance and grey prediction was applied to an artificial
pneumatic muscle manipulator with unknown dynamics. The
main motivation for this work was its applicability to planned

Fig. 5. Experiment Results: Neuro-Impedance with Grey, Neuro-Impedance
and Neural Controllers

Fig. 6. Zoomed Version of Experiment Results: Neuro-Impedance with Grey,
Neuro-Impedance and Neural Controllers

future work of learning grasping affordances. The two sub-
motions of a human arm were realized by combining arti-
ficial neural networks with the PID controller managed by
impedance placed between an end-effector and a goal object.
Grey predictors added to the PID controller improve the
performance noticeably. The proposed PID controller with
impedance was shown to be applicable to control the end-
effector position for dexterous grasping and allowed ISAC
to learn tool grasping by adaptively changing its virtual
impedance parameters.

VI. FUTURE WORK

In the future, robots will be required to exhibit robust
performance in a wide range of situations and accomplish in-
creasingly complex tasks. Robotic control systems must evolve
to handle such complex tasks. One promising approach is to
advance the control technology beyond existing engineering-
oriented approach to empower robots with human-like cogni-
tive control capabilities [26]. For example, affect is one of the
most important control features to accomplish conflicting goals
across a broad range of dynamically changing circumstances
in which robots are situated. Another important feature is
for robots to learn affordances [27]. Affordance relations
are an emergent property of the goal-situation relationship.
By empowering robots how to learn affordances, robots will
learn, from experience. Affordance learning has been recently
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studied for robot manipulators [28][29] and mobile robots [30].
We are modeling affordances as statistical relations between
actual actions, object properties and the results or experiences
of actions on objects and evaluating how the robot uses these
affordances to execute the new tasks successfully.

Although ISAC has successfully demonstrated to be use-
ful in human-robot coexisting environments in a lab setting
[31][32], its arm movements were rather primitive and acting
as a separate agent from our cognitive structure. In order to
achieve more natural arm movements and better adaptability
within our cognitive control architecture, we have developed
the more distributed human-like controller. Our approach uses
a hybrid artificial neural network- and vision-based impedance
controller. This controller regulates the virtual impedance
between ISAC arm and the external objects using the visual
information. Unlike the conventional impedance controller, it
uses the virtual interaction force to express the relationship
between the manipulator and the environment without physical
contact, so that the dynamics of the relative motion of ISAC
arm to the object can be controlled using virtual force fields
(i.e., non-contact impedance surfaces).
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