
 

 

Abstract—This paper introduces a novel approach to a crucial 

problem in robotics:  Constructing robots that can learn general 

affordance relations from their experiences.  Our approach has 

two components.  (a) The robot models affordances as statistical 

relations between actual actions, object properties and the 

experienced effects of actions on objects.  (b) To exploit the 

general-knowledge potential of its actual experiences, the robot, 

much like people, engages in internal rehearsal, playing-out 

"imagined" scenarios grounded in but different from actual 

experience. To the extent the robot veridically appreciates 

affordance relations, the robot can autonomously predict the 

outcomes of its behaviors before executing them. Accurate 

outcome prediction in turn facilitates planning of a sequence of 

behaviors, toward executing the robot's given task successfully. In 

this paper, we report very first steps in this approach to 

affordance learning, viz., the results of simulations and 

humanoid-robot-embodied experiments targeted toward having 

the robot learn one of the simplest of affordance relations, that a 

space affords traversability vs. impediment to a goal-object in the 

space. 

 
Index Terms — Affordance, internal rehearsal, robotics, 

cognitive science 

I. INTRODUCTION 

n the future, robots will need to accomplish more and more      

complex tasks in increasingly challenging environments, 

exhibiting robust performance in a wide range of situations.  

It is expected that robot control systems will become more 

complex, to the point that adaptivity and robustness could be 

compromised. A promising approach qualitatively to advance 

robotic technology is to train robots' attention on that which is 

most important to accomplish their goals, across the broad 

range of changing circumstances the robot is expected to 

encounter: the affordance relations that connect situational 

features to behavioral repertoire so as to subserve goal 

accomplishment [1].  As the robot comes to appreciate what its 

situation and its repertoire, taken together, afford for its goal 

accomplishment, the robot is likely to perform more adeptly in 

the service of its goals.  For robots to come to recognize 

affordance relations from their limited experiences, robots 

need capabilities to revisit and to reconsider their own 

experiences [2], the ability to learn and internally rehearse the 
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possible outcomes of the behaviors, to increase the efficiency 

and effectiveness with which robots learn affordance relations 

on their own.  Robots that can anticipate and account for the 

effects and expected performance of their behaviors will 

behave more like living things that are aware and 

knowledgeable of their capabilities and shortcomings.  The 

capability to learn and to deploy goal-subserving knowledge of 

affordance relations is a logical extension to the architecture of 

the ISAC—Intelligent Soft Arm Control—humanoid robot in 

our laboratory [2] 

A. Affordance Relations 

The notion of affordance was originally introduced by a 

psychologist studying perception, J.J. Gibson, who gave 

special attention to the problem of explaining how the living 

organisms perceive the environment and link available action 

possibilities to environmental objects [3].  For Gibson, 

affordance is a directly perceivable attribute of objects.  For 

example, to perceive a ball is perceive that it affords throwing.  

Recent thinking [4] sees affordance as an emergent property of 

the task-object relationship.  For example, a ball affords 

throwing when the task is to play a game of catch, but the ball 

affords a reduction of friction when the task is to move a heavy 

object over a surface. 

In the last decade, robotics and AI researchers have started 

to explore and exploit the concept of affordances for the 

design and implementation of intelligent systems 

accomplishing tasks in dynamic environments.  Affordances 

have been learned and then used for behavior selection so as to 

satisfy internal drives; thereby enabling a mobile robot to exist 

autonomously within its environment was investigated [5]. In 

an ambitious effort [6], Stoytchev adds Piaget’s developmental 

theories [7] to Gibson's notion of affordance, to take a 

developmental approach to learning affordances. Additional 

exploratory research has utilized backpropagation of 

reinforcement learning signals to enable affordance cueing [8], 

combined imitation learning with a world model developed 

through learned affordances [9], function-based object 

recognition [10], and grasping learning [11]. 

A central limitation of prior work is that, following Gibson, 

affordances are taken to be directly perceivable attributes 

intrinsic to objects themselves.  As such, robots' learning of 

affordances to-date occurs with very limited generalization to 

different and/or unfamiliar objects.  By complete contrast, by 

seven months of age, a human infant is already starting to 

shape and orient her or his hand while moving the hand toward 

an object, in anticipation of grasping the object, something the 
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infant can do robustly with objects she or he has never 

previously encountered [12]. 

To move toward this level of generality of affordance 

learning, the notion of affordance is taken one logical step 

further in this paper.  Both Gibson and neo-Gibsonians like 

Stoffregen would adamantly eschew any invocation of an 

internal state like a goal, because these are not directly 

observable in brains.  By contrast, robots' hardware and 

software are fully exposed, so an internal goal state is a simple 

fact, not a problematic Aristotelian final cause.  Following [1], 

a central proposal in this paper is that, for complex goals in 

complex, changing environments, a robot's adaptive 

effectiveness will be qualitatively enhanced to the extent that 

the robot leverages the affordance relations that characterize 

how situational features can be coupled to the robot's 

behavioral repertoire, so as to take actions that advance the 

robot's goals.    This notion of an affordance relation advances 

beyond neo-Gibsonian thinking, to offer an original 

perspective on how to bind together perceived situational 

features, behavioral repertoire and reasoning.  Recognizing 

and reasoning about affordance relations thus has important 

potential to advance intelligent robotics research, toward the 

design of new, powerful and intuitive robot control 

architectures [13]. 

B. Internal Rehearsal  

The ability to rehearse possible future steps of action in the 

mind is an important human cognitive skill. People are able 

mentally to consider the nature of a problem with its potential 

solutions and to evaluate many possible plans of action, before 

they physically deploy one. In effect, thinking often involves 

mental rehearsal that allows people to practice and thereby to 

improve what they intend to do.  

 Sometimes people can learn performance-improving lessons 

directly from very few experiences. Typically, however, 

people do well to explore their actual experiences with mental 

rehearsal of scenarios that are grounded in experience and yet 

reflect potentially informing parametric variations of 

experience. A robot endowed with similar capability can 

usefully estimate the consequences of its actions so as to 

improve performance. In some circumstances, the robot could 

even use internal rehearsal to learn how to perform new tasks. 

Jirenhad et al., have proposed a basis for an ‘inner world’ that 

allows robots to behave and anticipate the future event in the 

absence of external sensory stimuli [14]. Shanahan has 

constructed an internal simulation that plays a critical role in 

allowing the cognitive higher-order loop to suppress a reactive 

loop when the reactive loop is about chooses a poor course of 

action [15]. Kawamura extended Shanahan’s work to 

demonstrate how a robot could internally rehearse actions to 

avoid obstacles [16]. Meeden et al., have shown how a simple 

recurrent network can exhibit behavior that is “plan-like” in 

the sense of associating abstract behavioral goals with 

sequences of primitive actions [17]. A connectionist robot 

controller has been shown to be able to acquire an internal 

‘model’ of the world through training on sensor prediction 

while moving around in a room [18]. Internal simulation of 

functions of the sensory and motor cortices has been deployed 

in robots [19]. A growing body of research is showing how 

fairly complex robot behaviors can be learned or organized 

with rich enough high-level world representations as to 

comprise an inner world in which the robot internally 

rehearses scenarios of adaptive import. 

C. Rehearsing Affordance Relations 

In this paper, we describe first steps in a program of 

neurobiologically inspired robotics research toward human 

capabilities to learn and generalize affordances relations from 

experience.  Specifically, we describe an implementation of 

internal rehearsal processes that work toward generalizing the 

robot's actual experiences, so that the robot learns to direct its 

attention toward affordance relations.  The robot then 

leverages its knowledge of affordance relations such that, 

given its current situation, the robot selects behaviors that the 

robot correctly predicts to yield outcomes that advance its 

goals.  After reviewing the bases for this approach, we report 

the results of first proof-of-concept experiments, in which, in a 

realistic simulation and later in real-world experiments, we 

bring the robot to learn a general affordance relation about 

arbitrary objects placed arbitrarily in a space: That a region of 

the space is traversable without collision, or is impeded.  

II. ISAC COGNITIVE ARCHITECTURE AND 

CONTROLLER 

A. Cognitive Architecture  

Work in our laboratory has yielded an operational humanoid 

robot that implements crucial features of human working 

memory under an NSF grant (ITR: A Biologically Inspired 

Adaptive Working Memory System for Efficient Robot 

Control and Learning, NSF grant # EIA0325641) [20]. In this 

implementation, ISAC—Intelligent Soft Arm Control—

humanoid robot, shown in Figure 1, learns how to respond to a 

limited set of tasks using an untrained long term memory 

model, in conjunction with  working memory system training 

that is grounded in a computational neuroscience model of 

working memory of the prefrontal cortex. This work 

demonstrated how to provide robotic systems with a means of 

maintaining task-related information during task execution in a 

manner similar to human task execution [21]. When a novel 

stimulus is present, this system explores different sensory-

motor responses and, over time, learns which sensory-motor 

association is most appropriate for a given situation. One of 

the novel features implemented is offline reflective module 

called the Internal Rehearsal System (IRS) [16]. In its original 

implementation, ISAC reviews its experiences and uses the 

Internal Rehearsal System for internally exploring alternative 

motor associations in order to predict likely consequences of 

such behavioral alternatives, thereby to learn how to improve 

its performance when similar situations arise in the future 

[22][2].  

This approach to and utilization of Working Memory and 

Internal Rehearsal should also be useful for forms of cognition 

more abstract than sensori-motor learning.  A vitally important 

yet challenging example is learning about those affordance 

relations that materially affect the likelihood of success and 

failure at a task.  Affordance relations do not exist objectively 

978-1-4244-2662-1/08/$25.00 ©2008 IEEE 299



 

Figure 1: ISAC Humanoid Robot 
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in the world.  Rather, they are imputed by an agent, and thus 

are perforce constructed internally, in light of the agent's goals 

and repertoire as well as the situational features of the world as 

the agent perceives them.  As such, one logical next step in 

Internal Rehearsal research is for a robot explicitly to impute, 

to register and to explore potential affordance relations in its 

working memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

B. ISAC Controller 

ISAC is an upper-torso humanoid with two 6-dof arms that 

are actuated pneumatically by artificial muscle actuators, 

providing a relatively safe human-robot interaction for 

manipulation, automation and other tasks.  We have developed 

a hybrid open-loop artificial neural network-based and vision-

based impedance controller for ISAC [23][24]. This controller 

regulates the virtual impedance between the ISAC arm and the 

external objects using visual information and impedance 

surfaces. 

III. LEARNING AFFORDANCES 

In this paper we consider the following reaching task for 

ISAC: Given an environment of unfamiliar objects, one of 

which is a goal object, ISAC should be able correctly either to 

traverse the environment with its arm and reach the designated 

goal object, or else refuse to traverse an environment in which 

collision with non-goal objects is unavoidable.  

Others have already started to make progress on related 

problems, albeit, as we said earlier, with limited generality.  

Affordance learning has been recently studied within robot 

manipulators [25] [26] and mobile robots [27]. Stoytchev [26], 

worked on representing and learning tool affordances by a 

robot. The 'binding affordances' allows a robot to learn how to 

attach an object to its body in order to control the object's 

movements.  The 'tool affordances' allows robot to discover 

the outcomes of tool-action pairs. Fitzpatrick et. al. [25], 

showed how the robot acquires affordances from the outcomes 

of its actions, and then deploys this knowledge of affordance 

to interpret human actions and mimic these actions. Ugur et. 

al. [27] studied the learning and generalization of the 

traversability affordance on a mobile robot and optimized the 

learning process. As mentioned in [27], the results reported in 

both [25] and [26] were far from a general knowledge of 

affordances, because [25] and [26] both used color to 

recognize objects, so the robot acquired no knowledge of the 

visual features of the objects that signal the manual operations 

afforded by the objects. In our work, we use the visible edge 

features of the objects as a basis for acquiring the affordance 

relation of traversable vs. impeded, and then use internal 

rehearsal to generalize to the point that the robot reliably finds 

the most appropriate behavior in every situation. Instead of 

recognizing objects and learning affordances to be attributes of 

specific objects, as is done in [25], we use the edge features as 

the basis of a traversability affordance relation.  Then, instead 

of interpreting human behaviors and mimicking these, we 

allow ISAC to rehearse its behaviors internally to estimate 

general affordance relations and how best to leverage these for 

any given task.  

ISAC acquires knowledge of affordance relations in two 

stages, a babbling stage followed by a learning stage. 

In the first stage, ISAC's Central Executive Agent (CEA) 

primes the Internal Rehearsal Subsystem (IRS), by having 

ISAC engage in random behavior, "motor babbling" [26], in 

order to accrue a baseline of experiences and consequences 

from which to generalize.  In the first part of this stage, ISAC 

reaches to the goal-object in an obstacle-free environment. 

Every time it reaches the goal, it gets a reward. In the second 

part of this stage, an impediment object is put between ISAC 

and the goal object. Every time ISAC's end-effector hits the 

impediment object, ISAC gets a punishment and keeps the 

position where its end-effector hits the object.  These rewards 

and punishments are tracked by the Affect Agent (AA) and the 

Intention Agent (IA), in order to structure ISAC's motivational 

processing to be congruent with the demand to reach only into 

traversable spaces. 

In the learning stage, ISAC's IRS creates and optimizes a 

Gaussian Mixture Model (GMM) to represent its accrued 

experiences. GMMs comprise a weighted sum of Gaussian 

probability density functions, or mixtures. GMMs are one of 

the more widely used methods for unsupervised clustering of 

data, where clusters are approximated by Gaussian 

distributions and fitted on the provided data.  

Assume we have a set of experienced collisions with 

positions, y1,…,ym. The probability that a particular y comes 

from the Gaussian distribution is shown in Equation 1 [28]. 

 

 

 

 

 

The unknown parameters, θ= {µ1,…µn, σ1,…σn, α1, …,αn}, 

are the means, variances and priors of each Gaussian 

submodels The expectation maximization (EM) is an iterative 

optimization method to estimate some unknown parameters of 

the model, given the measurement data. The process is 

repeated iteratively until it converges to a local maximum 

likelihood estimate for the model, so this algorithm requires a 

good initial estimate, to prevent the model converging into 

poor local maxima. As discussed in [28], applying a rough k-

means clustering technique partially solves this problem. 
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Figure 2. The ellipsoids are the Gaussian submodels. The points are the 

collision points (data set), gathered in the babbling stage.  

Fig. 3. High-Impedance Gaussian Surfaces 
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Fig. 4. ISAC Simulator and Internal Rehearsal 

Fig. 5. The ellipsoids are the Gaussian submodels. The points are the collision 

points (data set), gathered in the babbling stage and randomly added collision 

points added later.  
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Using the estimation maximization toolbox, supplied in [29], 

ISAC iteratively optimizes the centers, the widths and the 

weights of the Gaussian submodels, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned in section II-B, our arm controller has 

heretofore moved the manipulator using impedance spheres. 

Instead of using spheres, however, ISAC can as easily use the 

high impedance Gaussian surfaces, shown in Figure 3, where 

we predefined the damping and spring constants to be big 

enough that the arm controller prefers going around the 

surfaces rather than penetrating the surfaces.  By this means, 

ISAC learns and generalizes a traversability affordance 

relation that it can directly instantiate by estimating the high-

impedance Gaussian surfaces that characterize the relationship 

between the behavioral repertoire of its arms, and objects in 

the environment, goal and impediment. Whenever a target and 

an obstacle are presented to ISAC, ISAC first finds the edges 

of these objects and then assigns the probability of collision to 

these edges and creates high impedance surfaces to build the 

reaching trajectories. 

 

 

 

 

 

 

 

 

 

 

IV. INTERNAL REHEARSAL SUBSYSTEM AND GMM 

UPDATE 

A robot endowed with internal rehearsal of scenarios that 

are grounded in experience can consider the consequences of 

its actions before they are performed by the actuation system. 

The robot can thereby predict its future state and the future 

state of the surrounding environment by emulating actions 

internally, before the robot enacts them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We implemented a simulation, the results from which are 

discussed in section V, and real-world experiments, discussed 

also in section V, to show how the system learns the 

affordances and use in the internal rehearsal.  In these 

experiments, ISAC tries to reach to the target using one of its 

arms as shown in Figure 4. First, ISAC detects the edges of the 

objects and using these edge features, ISAC internally creates 

the virtual high-impedance Gaussian surfaces based on learned 

affordances. Then ISAC checks whether it can traverse the 

environment with its arm and reach the designated target or 

not.  If ISAC finds a trajectory around the surfaces, it executes 

the action. However, if these actions don’t traverse the 

environment, then ISAC will not execute the action.  

 During this stage, ISAC could experience some new 

collisions that did not exist in the babbling training set. In 

order to include the effects of these new experiences, ISAC 

will update GMM to represent the learned affordances better.  

In this process, the important point is to create a GMM that 

generalizes and covers the workspace better, i.e. a GMM 

which has well-distributed submodels with the larger 

variances. 

 To show how the GMM update process works, we have 

added some random collision points to the training set and let 

ISAC select the best GMM for the new data set. The result of 

the new GMM selection is shown in Figure 5. Compared to the 

original GMM submodels in Figure 2, the new GMM has more 

submodels that include the both the babbling data set and 

randomly generated new collisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

978-1-4244-2662-1/08/$25.00 ©2008 IEEE 301



 

Fig. 6. The babbling stage simulation sample and virtual-high 

impedance Gaussian surfaces assigned to the object and the target 

Fig. 7. The impedance surface created for an object located at (0 , 550).  

The impedance surface does not allow left hand to reach the object, but 

ISAC can reach the object using its right hand. 

V. EXPERIMENTAL METHODS  

In our experiment, each ISAC arm had a different gripper, as 

depicted in Figure 1.  Objects of varying shapes were 

presented in the workspace, and the heights and edges were 

determined by simple stereo vision and edge detection 

techniques.  In order to receive collision feedback, a human 

experimenter provided a reward or a punishment whenever an 

arm reached the target or collided with an obstacle, 

respectively. 

The first step of the experiment was to generate collision 

data during the babbling stage.  As shown in Figure 6, various 

shapes of obstacle were placed in various positions in the 

workspace.  ISAC then attempted to reach to a number of goal 

objects placed by a human trainer throughout the workspace. 

Since ISAC had no prior knowledge of collision, it naively 

plotted paths (using internal rehearsal) and attempted the 

shortest path from the starting position to each goal position.  

If the arm collided with an obstacle, the point at which the 

collision occurred was recorded (shown as red points in Figure 

2) and the attempt to reach to the goal was terminated.  In this 

manner, ISAC babbled throughout its workspace and 

discovered the edges of obstacles by colliding with them.  

The second step was to create the submodels to represent 

the babbling data as a GMM using the expectation 

maximization algorithm as described in [28]. The GMM 

submodels for the babbling data are shown as ellipsoids in 

Figure 5.  These models summarize and start to generalize the 

likelihoods of collisions in different regions of space for each 

arm. 

The third step involved visually discriminating the edges of 

the otherwise completely unfamiliar objects and fusing these 

edge data with the collision data, to create the virtual-high 

impedance Gaussian surfaces. For example, given a cylinder, 

located at the position [0 550], this component finds the edges 

of the cylinder and assigns a virtual-high impedance Gaussian 

surface to this object as shown in Figure 6. 

The final step of the experiment involved the Internal 

Rehearsal System (IRS). This step creates a Gaussian surface 

for the current environment comprising unfamiliar objects in a 

novel configuration. Using these surfaces, IRS evaluates the 

limits of its kinematics to project whether or not it can traverse 

the environment with one of its arms and reach the designated 

goal object without collision.  This internal rehearsal allows 

ISAC to make a decision as to which actions it can take.  Such 

actions are: “collision with the left arm so will use right arm to 

reach”, “collision with the right arm, so will use left arm to 

reach”, “collision with the both arms, so won’t do anything” 

and “no collision with either arm, so will use one of the arms 

to reach”. 

VI. RESULTS 

These outcomes of the IRS were evaluated for adequacy and 

for optimality by a human experimenter.  For all trials, ISAC 

exhibited an adequate performance: that is, ISAC chose a 

course of action that would not result in a collision.  8% of 

trials resulted in sub-optimal actions, i.e. there was a collision-

free action ISAC could have taken but ISAC did not recognize 

such action. 

 

 

 An interesting result we discovered from our experiment 

was the impact of the shape of the gripper on collision 

probability and the formation of impedance surfaces as shown 

in Figure 7.  In simulation, the shape of the gripper was an 

intrinsic part of the simulation and it had no effect on 

experiment. In the real-world experiment, we found that since 

we did not predefine the exact gripper shape for each arm, 

additional collision data was generated near the edges of the 

obstacles.  This data was found to follow a Gaussian 

distribution.  We therefore added an additional term to the 

collision probability to represent different grippers used. This 

in turn yielded the result that ISAC was willing to move the 

arm with the smaller gripper closer to an obstacle than the 

other arm.  This shows that ISAC is beginning to learn how to 

use each gripper distinctively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We analyzed ISAC's performance.  During babbling, ISAC 

collided with objects in the workspace in 78 of 100 trials, 

which is significantly worse than random (50-50), χ2 = 31.36, 

p < .000.  By contrast, as a result of what ISAC learned during 

babbling, ISAC's internal rehearsal yielded correct assessments 

of traversability in 72 of 100 trials, significantly better than 

random (50-50), χ2 = 40.96, p < .000.  To place this level of 

performance in meaningful human context, we constrained a 

person (author Ulutas) to have ISAC’s visual vantage point, 
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and to move his arms with ISAC’s degrees of freedom.  Under 

these constraints, the person incurred 8 collisions in 100 trials, 

even after 100 trials of babbling during which the human 

exhibited 7 collisions.  The human agent’s performance was 

significantly better than ISAC’s, χ2 = 13.59, p < .000.  

However, the performance of an adult human was significantly 

worse than near-perfect (99-1), χ2 = 49.45, p < .000, and was 

too rigidly over-learned to benefit from practice. 

VII.  CONCLUSION 

The goal of our research is to enable a humanoid robot like 

ISAC to learn general affordance relations that ISAC can then 

deploy toward successful accomplishment of its goals.  We 

reported herein a first success in augmenting ISAC's current 

architecture and capabilities [2], so as to bring ISAC, in 

simulation and in humanoid robotic embodiment, to 

experience, provisionally to learn, internally to rehearse and 

then, while not yet perfectly, significantly correctly to 

generalize affordance relations.  Affordance relations are 

provisionally learned during a babbling stage, and then are 

represented as a Gaussian mixture model. ISAC can use this 

model to create high impedance Gaussian surfaces, by 

detecting the edges of the objects and using the GMM derived 

from its experience to assign a probability of collision or 

collision-free traversal. This will allow the arm controller to 

create collision free trajectories for traversing around the 

objects in its environment. By this means, ISAC learns and 

generalizes a traversability affordance relation that it can 

directly instantiate: Estimating the high-impedance Gaussian 

surfaces that characterize the relationship between the 

behavioral repertoire of its arms, the obstacles in the 

environment, and its goal to get to a target without colliding 

with any other (impediment) objects.   In so doing, ISAC has 

gained significant purchase on a general affordance relation 

that ISAC can instantiate whenever ISAC has to reach target 

objects, without colliding with any non-target objects. 

 In this paper, we have reported a first step of progress 

toward human-like capabilities to learn and generalize 

affordance relations from experience.  In simulation and in 

humanoid robotic embodiment, starting from experiences, 

ISAC has internally rehearsed to estimate the general 

affordance relations of traversability of a space containing a 

target and impediment objects. ISAC has demonstrated 

significant ability to leverage a general appreciation of 

traversability in the context of an arbitrary reaching task within 

its workspace.  
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